日韩黄色一级片免费看-丁香婷婷激情五月天综合-日日激情综合久久一区-久久麻豆精亚洲av品国产一区

  設(shè)為主頁 加入收藏 English
 
 
 
 新聞動(dòng)態(tài)
 行業(yè)動(dòng)態(tài)
 展會(huì)信息
 誠聘英才
 
 

Membrane roughness as a sensitive parameter reflecting the status of neuronal cells in response to chemical and nanoparticle treatments

發(fā)布時(shí)間:2016-07-25  點(diǎn)擊次數(shù):325  新聞來源:
 

作者 Chia-Wei Lee, Lan-Ling Jang, Huei-Jyuan Pan, Yun-Ru Chen, Chih-Cheng Chen and Chau-Hwang Lee

 

 

摘要:Background

Cell membranes exhibit abundant types of responses to external stimulations. Intuitively, membrane topography should be sensitive to changes of physical or chemical factors in the microenvironment. We employed the non-interferometric wide-field optical profilometry (NIWOP) technique to quantify the membrane roughness of living neuroblastoma cells under various treatments that could change the mechanical properties of the cells.

 

Results

The membrane roughness was reduced as the neuroblastoma cell was treated with paclitaxel, which increases cellular stiffness by translocating microtubules toward the cell membranes. The treatment of positively charged gold nanoparticles (AuNPs) showed a similar effect. In contrast, the negatively charged AuNPs did not cause significant changes of the membrane roughness. We also checked the membrane roughness of fixed cells by using scanning electron microscopy (SEM) and confirmed that the membrane roughness could be regarded as a parameter reflecting cellular mechanical properties. Finally, we monitored the temporal variations of the membrane roughness under the treatment with a hypertonic solution (75 mM sucrose in the culture medium). The membrane roughness was increased within 1 h but returned to the original level after 2 h.

 

Conclusions

The results in the present study suggest that the optical measurement on membrane roughness can be regarded as a label-free method to monitor the changes in cell mechanical properties or binding properties of nanoparticles on cell surface. Because the cells were left untouched during the measurement, further tests about cell viability or drug efficacy can be done on the same specimen. Membrane roughness could thus provide a quick screening for new chemical or physical treatments on neuronal cells.

 

關(guān)鍵詞:Optical profilometry ;Neuroblastoma cell ;Paclitaxel ;Charged nanoparticle

 

 
 
上海市普陀區(qū)嵐皋路567號(hào)1108-26室 電話:021-62665073 400-718-7758 傳真:021-62761957
美國布魯克海文儀器公司上海代表處 版權(quán)所有  管理登陸 ICP備案號(hào):滬ICP備19006074號(hào)-2 技術(shù)支持:化工儀器網(wǎng)