日韩黄色一级片免费看-丁香婷婷激情五月天综合-日日激情综合久久一区-久久麻豆精亚洲av品国产一区

  設(shè)為主頁 加入收藏 English
 
 
 
 新聞動態(tài)
 行業(yè)動態(tài)
 展會信息
 誠聘英才
 
 

Fabrication and interfacial characteristics of surface modified Ag nanoparticle based conductive composites

發(fā)布時(shí)間:2018-03-29  點(diǎn)擊次數(shù):205  新聞來源:
 

作者 Yingsi Wua, Lun-De Liaob, Han-Chi Panb, Leng Hebc, Chin-Teng Lind and Mei Chee Tan*a

aEngineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore.

bInstitute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Rd., Zhunan Town, Miaoli County 35053, Taiwan, Republic of China

cInstitute of Biomedical Engineering, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300, Taiwan, Republic of China

dFaculty of Engineering and Information Technology, University of Technology Sydney, City Campus 15 Broadway, Sydney 2007, Australia

 

摘要:The recent emergence of wearable electronics has driven the advancements of flexible and elastic conductive metal–polymer composites as electrodes and sensors. Surface modification of the conductive metal fillers are required to achieve a good dispersion within the matrix to obtain suitable conductivity and sensing properties. Additionally, it would be critical to ensure that the inclusion of these fillers does not affect the curing of the pre-polymers so as to ensure sufficient filler loading to form functional composites. In this work, a one-step approach is used to modify Ag–PAA nanoparticles via hydrogen bonds to form PAA–PVP complex modified Ag nanoparticles. The interfacial characteristics and thermal stability of these surface-modified Ag nanoparticles were studied to elucidate the underlying chemistries that governed the surface modification process. After surface modification, we successfully improved the dispersion of Ag nanoparticles and enabled curing of PDMS to higher Ag loadings of 25 vol%, leading to much lower electrical resistivity of 6 Ω cm. Our studies also showed that Ag nanoparticles modified at a PAA/PVP molar ratio of 1:10 resulted in a minimal particle aggregation. In a preliminary testing of our conductive composites as electrodes, clear electrocardiography signals were obtained. The facile surface modification method introduced here can be adapted for other systems to modify the particle interfacial behavior and improve the filler dispersion and loading without adversely affecting the polymer curing chemistry.

 
 
上海市普陀區(qū)嵐皋路567號1108-26室 電話:021-62665073 400-718-7758 傳真:021-62761957
美國布魯克海文儀器公司上海代表處 版權(quán)所有  管理登陸 ICP備案號:滬ICP備19006074號-2 技術(shù)支持:化工儀器網(wǎng)