日韩黄色一级片免费看-丁香婷婷激情五月天综合-日日激情综合久久一区-久久麻豆精亚洲av品国产一区

  設(shè)為主頁(yè) 加入收藏 English
 
 
 
 新聞動(dòng)態(tài)
 行業(yè)動(dòng)態(tài)
 展會(huì)信息
 誠(chéng)聘英才
 
 

測(cè)量應(yīng)用案例-2020108

發(fā)布時(shí)間:2020-01-17  點(diǎn)擊次數(shù):256  新聞來(lái)源:
 

文獻(xiàn)名:Covalent stabilization and functionalization of MXene via silylation reactions with improved surface properties

 

作者Jingjing Ji, Lufang Zhao, Yanfei Shen, Songqin Liu, Yuanjian Zhang

Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China

 

摘要:As an emerging 2D material, MXene combing hydrophilic surface, metallic conductivity and rich surface chemistry, has drawn much attention for applications ranging from electronic devices to electrochemical energy storage. However, the stability of MXene needs improvement, which is crucial to related applications. Here, we report a facile silylation reaction for efficient stabilizing the MXene against structural degradation due to spontaneous oxidation and improved surface properties with adjustable hydrophilicity. (3-Aminopropyl)triethoxysilane functioned MXene (APTES-MXene) was chosen as the model to evaluate the stability and surface property changes. By measuring the UV–Vis absorbance change of samples, the stability could be facilely monitored. The stability of the MXene in air degraded by 17.1%, 35.4%, 65.3% and 95.6% after 1, 3, 6 and 11?days, respectively. In contrast, the stability of APTES-MXene only reduced 20.8% after 11?days. Other silylating reagents were also explored and exhibited similar boosted stability with additional surface regulation from hydrophilic to hydrophobic.

 
 
上海市普陀區(qū)嵐皋路567號(hào)1108-26室 電話:021-62665073 400-718-7758 傳真:021-62761957
美國(guó)布魯克海文儀器公司上海代表處 版權(quán)所有  管理登陸 ICP備案號(hào):滬ICP備19006074號(hào)-2 技術(shù)支持:化工儀器網(wǎng)