日韩黄色一级片免费看-丁香婷婷激情五月天综合-日日激情综合久久一区-久久麻豆精亚洲av品国产一区

  設(shè)為主頁 加入收藏 English
 
 
 
 新聞動態(tài)
 行業(yè)動態(tài)
 展會信息
 誠聘英才
 
 

測量應(yīng)用案例-20211104

發(fā)布時間:2021-11-17  點擊次數(shù):144  新聞來源:
 

文獻(xiàn)名: Eco-Friendly and Facile Synthesis of Antioxidant, Antibacterial and Anticancer Dihydromyricetin-Mediated Silver Nanoparticles

 

 

 

作者 Zhao Li,1,2 Iftikhar Ali,1,3 Jiying Qiu,4 Huanzhu Zhao,1 Wenya Ma,1,2 Aiying Bai,5 Daijie Wang,1 and Jingchao Li1

1Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, People’s Republic of China

2College of Life Science, Shandong Normal University, Jinan, 250014, People’s Republic of China

3Department of Chemistry, Karakoram International University, Gilgit, 15100, Pakistan

4Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People’s Republic of China

5Jinan Municipal Center for Disease Control and Prevention, Jinan, 250001, People’s Republic of China

Correspondence: Daijie Wang; Jingchao Li Shandong Analysis and Test Center, Qilu University of Technology

 

 

 

摘要:

Background

Dihydromyricetin (DMY), a natural flavonoid, has reportedly antibacterial, antioxidant, anticancer and other properties. In the present study, DMY was used as a reducing agent and stabilizer to synthesize silver nanoparticles (AgNPs), and the optimal conditions for its synthesis were studied. The DMY-AgNPs were investigated for their DPPH scavenging properties and their potential against human pathogenic and food-borne bacteria viz. Escherichia coli (E. coli), and Salmonella. In addition, DMY-AgNPs also showed excellent inhibitory effects on cancer Hela, HepG2 and MDA-MB-231 cell lines.

Methods

The dihydromyricetin-mediated AgNPs (DMY-AgNPs) were characterized by ultraviolet-visible spectrophotometer (UV-Vis spectra), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD). Antioxidant activity of DMY-AgNPs was determined by 1.1-diphenyl-2-picrylhydrazyl (DPPH) scavenging. The antibacterial activity was determined by 96-well plate (AGAR) gradient dilution, while anticancer potential was determined by MTT assay.

Results

The results showed that the dispersion of AgNPs had the maximum UV–visible absorption at about 410 nm. The synthesized nanoparticles were almost spherical. FTIR was used to identify functional groups that may lead to the transformation of metal ions into nanoparticles. The results showed that the prepared AgNPs were coated with biological molecules in the extraction solution. The biosynthesized DMY-AgNPs exhibited good antioxidant properties, at various concentrations (0.01–0.1mg/mL), the free radical scavenging rate was about 56–92%. Furthermore, DMY-AgNPs possessed good antibacterial properties against Escherichia coli (E. coli), and Salmonella at room temperature. The minimum inhibitory concentrations (MIC) were 106 g/L, and 104 g/L, respectively. The bioactivity of DMY-mediated AgNPs was studied using MTT assay against Hela, HepG2 and MDA-MB-231 cancer cell lines, and all showed good inhibitory effects.

Conclusion

The present study provides a green approach for the synthesis of DMY-AgNPs which exhibited stronger antioxidant, antibacterial and anticancer properties compared to the dihydromyricetin. DMY-AgNPs can serve as an economical, efficient, and effective antimicrobial material for its applications in food and pharmaceutical fields.

 

 

關(guān)鍵詞:natural flavonoid, DMY-AgNO3-NPs, green approach, DPPH, Escherichia coli, Salmonella, Hela, HepG2, MDA-MB-231

 
 
上海市普陀區(qū)嵐皋路567號1108-26室 電話:021-62665073 400-718-7758 傳真:021-62761957
美國布魯克海文儀器公司上海代表處 版權(quán)所有  管理登陸 ICP備案號:滬ICP備19006074號-2 技術(shù)支持:化工儀器網(wǎng)