文獻(xiàn)名:Composites of mesoporous silica precipitated on nanofibrillated cellulose and microfibrillated cellulose: Effect of fibre diameter and reaction conditions on particle size and mesopore diameter
作者: Simin Miria,Vikram Singh Raghuwanshia,Philip C. Andrewsb,Warren Batchelora
a BioResource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, 3800, Victoria, Australia
b School of Chemistry Monash University Clayton, Melbourne, VIC, 3800, Australia
摘要:Composites of MSNs (mesoporous silica nanoparticles) with nanofibrillated cellulose (NFC) and microfibrillated cellulose (MFC) were synthesized via in-situ precipitation. Controlling particle size distribution (PSD), pore diameter, and pore volume of mesoporous silica nanoparticles (MSNs) by cellulose nanofiber size has been investigated. In-situ precipitation on the 19 nm median diameter of NFC fibres produces MSNs in the diameter range 20–30 nm, the smallest MSN size reported. MSNs precipitated on MFC fibres with a 26 nm median diameter are 37% larger with broader size distribution, larger mesopore diameters, and lower specific surface area. The pore volume of MFC-MSNs composite was due to internal mesopores of MSNs and among particles and fibres, while it was primarily because of mesopores within MSNs in NFC-MSNs composite. Particle diameters were unaffected by varying the molar ratio of cellulose: TEOS (tetraethoxysilane) and reaction time. The reaction was mostly complete within only 10 min. The best NFC-MSN composite displayed a specific surface area of 567 m2/g with a saturated adsorption capacity of 134 mg/g of methylene blue (MB).
關(guān)鍵詞:Mesoporous silica;Nanofibrillated cellulose;Microfibrillated cellulose;Composite;Pore;SBET;Aerogel
|